Abstract

We perform one-dimensional numerical simulations of small-amplitude acoustic pulses in space- and time-dependent random mass density and time-dependent velocity fields. Numerical results reveal that: (a) random fields affect the speeds, amplitudes and, consequently, shapes of sound pulses; (b) for weak random fields and short propagation times the numerical data converge with the analytical results of the mean field theory which says that a space-dependent (time-dependent) random field leads to wave attenuation (amplification) and all random fields speed up sound pulses; (c) for sufficiently strong random fields and long propagation times numerical simulations reveal pulse splitting into smaller components, parts of which propagate much slower than a wave pulse in a non-random medium. These slow waves build an initial stage of a wave localization phenomenon. However, this effect can be very weak in a real three-dimensional medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call