Abstract

A simple one-dimensional model is proposed, in which N spinless repulsively interacting fermions occupy M>N degenerate states. It is argued that the energy spectrum and the wavefunctions of this system strongly resemble the spectrum and wavefunctions of 2D electrons in the lowest Landau level (the problem of the Fractional Quantum Hall Effect). In particular, Laughlin-type wavefunctions describe ground states at filling factors v = N/M = 1/q, q odd.. Within this model the complimentary wavefunction for v=1−1/q is found explicitly, and extremely simple ground state wavefunctions for arbitrary odd-denominator filling factors are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.