Abstract
Silicon microring resonators (Si-MRRs) play essential roles in on-chip wavelength division multiplexing (WDM) systems due to their ultra-compact size and low energy consumption. However, the resonant wavelength of Si-MRRs is very sensitive to temperature fluctuations and fabrication process variation. Typically, each Si-MRR in the WDM system requires precise wavelength control by free carrier injection using PIN diodes or thermal heaters that consume high power. This work experimentally demonstrates gate-tuning on-chip WDM filters for the first time with large wavelength coverage for the entire channel spacing using a Si-MRR array driven by high mobility titanium-doped indium oxide (ITiO) gates. The integrated Si-MRRs achieve unprecedented wavelength tunability up to 589 pm/V, or VπL of 0.050 V cm with a high-quality factor of 5200. The on-chip WDM filters, which consist of four cascaded ITiO-driven Si-MRRs, can be continuously tuned across the 1543–1548 nm wavelength range by gate biases with near-zero power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.