Abstract

In this work, we present a complete derivation of the NonAdiabatic Bohmian DYnamics (NABDY) equations of motion. This approach naturally emerges from a transformation of the molecular time-dependent Schrödinger equation in the adiabatic representation of the electronic states. The numerical implementation of the method is discussed while simple nonadiabatic models are employed to address the accuracy of NABDY and to reveal its ability to capture nuclear quantum effects that are missed in trajectory surface hopping (TSH) due to the independent trajectory approximation. A careful comparison of the correlated, NABDY, and the uncorrelated, TSH, propagation is also given together with a description of the main approximations and assumptions underlying the "derivation" of a nonadiabatic molecular dynamics scheme based on classical trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.