Abstract
We prove an inequality on the Kantorovich-Rubinstein distance–which can be seen as a particular case of a Wasserstein metric–between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, but with a moderate angular singularity. Our method is in the spirit of [7]. We deduce some well-posedness and stability results in the physically relevant cases of hard and moderately soft potentials. In the case of hard potentials, we relax the regularity assumption of [6], but we need stronger assumptions on the tail of the distribution (namely some exponential decay). We thus obtain the first uniqueness result for measure initial data. In the case of moderately soft potentials, we prove existence and uniqueness assuming only that the initial datum has finite energy and entropy (for very moderately soft potentials), plus sometimes an additionnal moment condition. We thus improve significantly on all previous results, where weighted Sobolev spaces were involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.