Abstract
We present polynomial time algorithms to solve the VERTEX RANKING problem for graphs of various graph classes among them trapezoid graphs, permutation graphs and circular-arc graphs. We demonstrate our approach in detail for a generalization of interval and trapezoid graphs called d-trapezoid graphs and for circular-arc graphs. All our algorithms use an approach called dynamic programming on pieces. Among others it exploits the property that all minimal separators and all the so-called pieces of these graphs can be represented by scanlines of an intersection model. This enables the design of polynomial time algorithms to list both all minimal separators and all pieces of an input graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.