Abstract

Trapezoid graphs are a class of cocomparability graphs containing interval graphs and permutation graphs as subclasses. They were introduced by Dagan et al. [3]. They propose an O( n 2) algorithm for chromatic number and a less efficient algorithm for maximum clique on trapezoid graphs. Based on a geometric representation of trapezoid graphs by boxes in the plane we design optimal, i.e., O( n log n), algorithms for chromatic number, weighted independent set, clique cover and maximum weighted clique on such graphs. We also propose generalizations of trapezoid graphs called k-trapezoid graphs. The ideas behind the clique cover and weighted independent set algorithms for trapezoid graphs carry over to higher dimensions. This leads to O( n log k−1 n) algorithms for k-trapezoid graphs. We also propose a new class of graphs called circle trapezoid graphs. This class contains trapezoid graphs, circle graphs and circular-arc graphs as subclasses. We show that clique and independent set problems for circle trapezoid graphs are efficiently solvable. The algorithms solving these two problems require algorithms for trapezoid graphs as subroutines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.