Abstract
Consider a class of graphs $$\mathcal{G}$$ having a polynomial time algorithm computing the set of all minimal separators for every graph in $$\mathcal{G}$$ . We show that there is a polynomial time algorithm for treewidth and minimum fill-in, respectively, when restricted to the class $$\mathcal{G}$$ . Many interesting classes of intersection graphs have a polynomial time algorithm computing all minimal separators, like permutation graphs, circle graphs, circular arc graphs, distance hereditary graphs, chordal bipartite graphs etc. Our result generalizes earlier results for the treewidth and minimum fill-in for several of these classes. We also consider the related problems pathwidth and interval completion when restricted to some special graph classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.