Abstract
Learning the deep structures and unknown correlations is important for the detection of motor imagery of EEG signals (MI-EEG). This study investigates the use of convolutional neural networks (CNNs) for the classification of multi-class MI-EEG signals. Augmented common spatial pattern (ACSP) features are generated based on pair-wise projection matrices, which covers various frequency ranges. We propose a frequency complementary feature map selection (FCMS) scheme by constraining the dependency among frequency bands. Experiments are conducted on BCI competition IV dataset IIa with 9 subjects. Averaged cross-validation accuracy of 68.45% and 69.27% is achieved for FCMS and all feature maps, respectively, which is significantly higher (4.53% and 5.34%) than random map selection and higher (1.44% and 2.26%) than filter-bank CSP (FBCSP). The results demonstrate that the CNNs are capable of learning discriminant, deep structure features for EEG classification without relying on the handcrafted features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.