Abstract

Electrodynamic Green’s functions are used to construct an analytical theory of the Bragg diffraction of polarized light in photonic crystals having a close-packed structure. For opal-based photonic crystals, the Bragg diffraction intensity is calculated with allowance for permittivity periodic modulation and for the presence of an optical crystal boundary and interlayer disordering, which usually appears during sample growth. A comprehensive study is made of the effect of the structure disorder caused by the random packing of growth layers on diffraction. For a random constructed twinned fcc structure, the average structure factor and the scattering (diffraction) cross sections (which are dependent on the linear polarization of the incident and scattered waves) are calculated. Numerical examples are used to show that the theory developed can be applied to analyze and process experimental diffraction patterns of real photonic crystals having a close-packed structure disordered in one direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.