Abstract

An analytic solution to the problem of current passage via an ideal insulator in the case of monopolar hole injection has been found. The current-voltage (J-V) characteristics have been obtained for the first time in a broad range of parameters (insulator length, hole concentrations at boundaries, temperature, etc.) and applied voltages. It is shown that the Mott-Gurney quadratic J-V relation is valid only in a certain interval of currents between J1 and J2. For J J2, where the J-V characteristic also becomes linear because the insulator is completely filled with injected holes. The integration constants are determined in the entire range of parameters and currents. Analytic expressions for the spatial electric-field and hole-concentration distributions are derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call