Abstract

The perpendicular shape anisotropy-spin transfer torque-magnetic random access memories (PSA-STT-MRAMs) take advantage of the nanopillar free-layer geometry for securing a good thermal stability factor from the shape anisotropy of the nanomagnet. Such a concept is particularly well-suited for small junctions down to a few nanometers. At such a volume size, the nanopillar can be effectively modeled as a Stoner–Wohlfarth particle, and the shape anisotropy scales with the spontaneous magnetization by ∼Ms2. For almost all ferromagnets, Ms is a strong function of temperature; therefore, the temperature-dependent shape anisotropy is an important factor to be considered in any modeling of the temperature-dependent performance of PSA-STT-MRAMs. In this work, we summarize and discuss various possible temperature-dependent contributions to the thermal stability factor and coercivity of the PSA-STT-MRAMs by modeling and comparing different temperature scaling and parameters. We reveal nontrivial corrections to the thermal stability factor by considering both temperature-dependent shape and interfacial anisotropies. The coercivity, blocking temperature, and electrical switching characteristics that resulted from incorporating such a temperature dependence are also discussed, in conjugation with the nanomagnet dimension and coherence volume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.