Abstract

The stoichiometry of boron nitride (BN) films, which are deposited with self-bias-assisted radio frequency (rf) magnetron sputtering of a hexagonal boron nitride (hBN) target, has been investigated with Auger electron spectroscopy (AES) and the MCs+-mode of secondary ion mass spectroscopy (MCs+-SIMS) for the sake of a better understanding of the growth mechanism of cubic boron nitride (cBN). The cubic fraction of the films is determined with Fourier-transform infrared spectroscopy (FTIR). It is shown that full stoichiometry of the deposited films is decisive for cBN-growth. A substrate bias voltage can increase the N concentration of a growing film under N-deficient deposition conditions. This effect is shown to be temperature dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call