Abstract

Compositional analyses of Pluto’s surface ice in the literature typically include large areas on the body where CH4 and other volatiles are segregated in the pure form from the solid solution N2:CH4 in which CH4 is diluted. However, the existence of continent-size areas of pure CH4 are in conflict with both of the alternative models that successfully explain the enhancement of CH4 in Pluto’s atmosphere, the Detailed Balancing thermal equilibrium model and the Hot Methane Patch model. Pluto’s spectrum includes an apparently unshifted CH4 component while Triton’s does not, and 93% of the concentration range of the binary phase diagram at 38K shows that these species exist as a mixture of two saturated solid solution phases. Recognizing this, we propose that both of these saturated phases are present on Pluto and the CH4-rich phase of the mixture, CH4:N2, is the source of the relatively unshifted CH4 spectrum attributed to pure CH4. We also propose that CH4 is less abundant in Triton’s ice to the point where either the ice is not saturated or the saturated CH4:N2 phase has not been detected. In this scenario, the partial vapor pressures do not change when the relative proportions of these saturated phases are varied in the mixture. Thus, the partial vapor pressures are independent of N2–CH4 concentrations if both saturated phases are present. Accordingly, the longitudinal and seasonal variations of CH4 and N2 features in Pluto’s spectrum would be attributed to spatial variations in the relative proportions of these species. This may occur during volatile transport in the sublimation wind through extensive influences. The lower, unsaturated, values of the mole fraction of CH4 in the ice reported by Owen et al. (Owen et al. [1993]. Science 261, 745–748) and Cruikshank et al. (Cruikshank, D.P., Rush, T.L., Owen, T.C., Quirico, E., de Bergh, C. [1998]. The surface compositions of Triton, Pluto, and Charon. In: Solar System Ices. Astrophysics and Space Science Library Series, vol. 227. Kluwer Academic Publishers, Dordrecht), and by Doute et al. (Doute, S., Schmitt, B., Quirico, E., Owen, T.C., Cruikshank, D.P., de Bergh, C., Geballe, T.R., Roush, T.L. [1999]. Icarus 142, 421–444) based on a compositional analysis of Pluto’s surface, were not obtained using optical constants for components consistent with the constraints of the phase diagram.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call