Abstract
Three-dimensional (3D) multislab diffusion-weighted echo-planar imaging (EPI) has been suggested as an alternative for high-resolution diffusion-weighted imaging. In this work, the key components of the sequence are investigated, optimal scan parameter settings suggested, and a signal-to-noise ratio (SNR) analysis, comparing 2D diffusion-weighted EPI and 3D multislab diffusion-weighted EPI, is performed. Slab profiles were measured using 3D multislab EPI to investigate slab profile saturation effects with respect to TR, T1 and overlap between slabs. For short TR values, two methods to reduce the slab banding artifacts are proposed. Moreover, the SNR for 2D and 3D multislab (3D-MS) DWI have been simulated for various anatomical coverages and slab thicknesses. Simulated 3D multislab scans were shown to be more SNR-efficient than a corresponding 2D scan, for all investigated anatomical coverages and slab thicknesses. Slab banding artifacts being negligible for long repetition times (TRs) were strong for a TR of 2000 ms, proving that they stem from T1 -saturation effects. This banding was largely reduced by the suggested correction methods. In the low TR regime, T1 -saturation effects between adjacent slabs need to be taken in consideration to avoid slab-banding artifacts for multislab sequences. With the proposed correction methods the difference between the SNR-optimal TR and the TR where slab-banding artifacts become acceptable is reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.