Abstract

The phosphatidylinositol transfer protein from bovine brain has a remarkable specificity pattern with a distinct preference for phosphatidylinositol (PI) and a low affinity for phosphatidylcholine (PC). In this study we have determined the affinity of PI-transfer protein for PI relative to that for PC by measuring the binding of the fluorescent pyrene-labeled analogs of these phospholipids. From competition binding experiments it was estimated that the transfer protein has a 16-fold higher affinity for PI than for PC. This relative affinity together with the relative abundance of PI and PC, determines what proportion of the protein contains PI (e.g. 65% of the PI-transfer protein in the case of bovine brain). From measuring lipid transfer between donor vesicles consisting of equimolar amounts of PC and PI, and an excess of acceptor vesicles consisting of various ratios of PC and PI, we have observed that the relative rates of the PI-transfer protein-mediated transfer of PI and PC varies between 5 and 20. Kinetic analysis has indicated that PI-transfer protein carrying a PI molecule has different kinetic properties than the PI-transfer protein carrying a PC molecule. It will be discussed that because of the dual specificity, PI-transfer protein is ideally suited for maintaining PI levels in intracellular membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.