Abstract

Discoidal lipid nanoparticles (LNPs) called Nanodiscs (NDs) are derived from human high-density lipoprotein (HDL). Such biomimetics are ideally suited for the stabilization and delivery of pharmaceuticals, including chemicals, bio-active proteins and vaccines. The stability and circulation lifetimes of reconstituted HDL nanoparticles, including NDs, are variable. Lipids found in thermophilic archaea and bacteria are prime candidates for the stabilization of LNPs. We report the thermal stability of NDs prepared with lipids that differ in saturation, have either ether- or ester linkages between the fatty acid and glycerol backbone or contain isoprenoid fatty acid tails (phytanyl lipids). NDs with two saturated fatty acids show a much greater long-term thermostability than NDs with an unsaturated fatty acid. Ether fatty acid linkages, commonly found in thermophiles, did not improve stability of NDs compared to ester fatty acid linkages when using saturated lipids. NDs containing phytanyl and saturated alkyl fatty acids show similar stability at 37 °C. NDs assembled with phytanyl lipids contain three copies of the membrane scaffolding protein as opposed to the canonical dimer found in conventional NDs. The findings present a strong basis for the production of thermostable NDs through the selection of appropriate lipids and are likely broadly applicable to LNP development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call