Abstract

The role of the finite, non-zero collision duration in high electric fields is examined for its effect on transient and over-shoot response of the carrier velocity and energy. The finite collision duration introduces a temporal retardation effect on the collisional relaxation mechanisms for energy and momentum. As a consequence, the effective temperature also undergoes an overshoot behavior, which leads to a general quickening of the total transient response. Calculations were performed for steady, homogeneous fields utilizing a displaced Maxwellian approach. These calculations were performed for GaAs and Si and have significance for sub-micron devices in these materials. The generally faster response leads to the prospect of improved high frequency properties over what is normally expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call