Abstract
The Minkowski content of a compact set is a fine measure of its geometric scaling. For Lebesgue null sets it measures the decay of the Lebesgue measure of epsilon neighbourhoods of the set. It is well known that self-similar sets, satisfying reasonable separation conditions and non-log commensurable contraction ratios, have a well-defined Minkowski content. When dropping the contraction conditions, the more general notion of average Minkowski content still exists. For random recursive self-similar sets the Minkowski content also exists almost surely, whereas for random homogeneous self-similar sets it was recently shown by Zähle that the Minkowski content exists in expectation.
 In this short note we show that the upper Minkowski content, as well as the upper average Minkowski content of random homogeneous self-similar sets is infinite, almost surely, answering a conjecture posed by Zähle. Additionally, we show that in the random homogeneous equicontractive self-similar setting the lower Minkowski content is zero and the lower average Minkowski content is also infinite. These results are in stark contrast to the random recursive model or the mean behaviour of random homogeneous attractors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.