Abstract
Let \(k\) be an algebraically closed field of characteristic zero, and \(k[[z]]\) the ring of formal power series over \(k\). In this paper, we study equations in the semigroup \(z^2k[[z]]\) with the semigroup operation being composition. We prove a number of general results about such equations and provide some applications. In particular, we answer a question of Horwitz and Rubel about decompositions of "even" formal power series. We also show that every right amenable subsemigroup of \(z^2k[[z]]\) is conjugate to a subsemigroup of the semigroup of monomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.