Abstract
We study Minkowski contents and fractal curvatures of arbitrary self-similar tilings (constructed on a feasible open set of an IFS) and the general relations to the corresponding functionals for self-similar sets. In particular, we characterize the situation, when these functionals coincide. In this case, the Minkowski content and the fractal curvatures of a self-similar set can be expressed completely in terms of the volume function or curvature data, respectively, of the generator of the tiling. In special cases such formulas have been obtained recently using tube formulas and complex dimensions or as a corollary to results on self-conformal sets. Our approach based on the classical Renewal Theorem is simpler and works for a much larger class of self-similar sets and tilings. In fact, generator type formulas are obtained for essentially all self-similar sets, when suitable volume functions (and curvature functions, respectively) related to the generator are used. We also strengthen known results on the Minkowski measurability of self-similar sets, in particular on the question of non-measurability in the lattice case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.