Abstract

The accreting compact objects in most of ultraluminous X-ray sources (ULXs) are likely to be neutron stars rather than black holes as suggested by the recent detection of periodic pulsations from some of these sources located in neighboring galaxies and one ULX that has hitherto been discovered in our own galaxy. As a member of the ULX family, NGC 300 ULX1 is a new pulsating ULX (PULX) spinning up at substantially high rates compared with other PULXs. In this paper, we infer the strength of the magnetic field on the surface of the neutron star from the energy of the cyclotron absorption line detected in the pulsed X-ray spectrum of NGC 300 ULX1 and estimate the plausible ranges for the neutron-star mass and beaming fraction using the observed spin period and period derivative of the pulsar and the measured X-ray flux of the source. Our analysis favors proton cyclotron resonance scattering as a viable mechanism to account for both the observed cyclotron energy and high spin-up rates provided that the absorption line is generated close to the surface of the neutron star.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call