Abstract

In this paper we focus on the problem of identifying the index sets P(x):={i|xi>0}, N(x):={i|Fi(x)>0} and C(x):={i|xi=Fi(x)=0} for a solution x of the monotone nonlinear complementarity problem NCP(F). The correct identification of these sets is important from both theoretical and practical points of view. Such an identification enables us to remove complementarity conditions from the NCP and locally reduce the NCP to a system which can be dealt with more easily. We present a new technique that utilizes a sequence generated by the proximal point algorithm (PPA). Using the superlinear convergence property of PPA, we show that the proposed technique can identify the correct index sets without assuming the nondegeneracy and the local uniqueness of the solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.