Abstract

The purpose of this paper is to present an algorithm for solving the monotone nonlinear complementarity problem (NCP) that enjoys superlinear convergence in a genuine sense without the uniqueness and nondegeneracy conditions. Recently, Yamashita and Fukushima (2001) proposed a method based on the proximal point algorithm (PPA) for monotone NCP. The method has the favorable property that a generated sequence converges to the solution set of NCP superlinearly. However, when a generated sequence converges to a degenerate solution, the subproblems may become computationally expensive and the method does not have genuine superlinear convergence. More recently, Yamashita et al. (2001) presented a technique to identify whether a solution is degenerate or not. Using this technique, we construct a differentiable system of nonlinear equations in which the solution is a solution of the original NCP. Moreover, we propose a hybrid algorithm that is based on the PPA and uses this system. We show that the proposed algorithm has a genuine quadratic or superlinear rate of convergence even if it converges to a solution that is neither unique nor nondegenerate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.