Abstract
We consider the well-posedness problem for the space-homogeneous Boltzmann equation with soft-potential collision kernels. By revisiting the classical Fourier inequalities and fractional integrals, we deduce a set of bilinear estimates for the collision operator on the space of integrable functions possessing certain degree of smoothness and we apply them to prove the local-in-time existence of a solution to the Boltzmann equation in both integral form and the original one. Uniqueness and stability of solutions are also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.