Abstract
A two resistance model is proposed for the heat transfer between a coaxially mounted heater and a three phase fluidized bed. Effects of gas and liquid velocity and particle size on individual heat transfer resistances in the heater and in the fluidized bulk zones have been determined. The optimum bed porosity at which the maximum heat transfer coefficient occurred coincided with the bed porosity at which the boundary layer thickness around the heater attained a minimum value. The fluidized bed resistance attained its minimum value when the maximum heat transfer coefficient is achieved in two and three phase fluidized beds. The heat transfer in the zone adjacent to the healer is found to be the rate controlling step since the contribution of fluidized bed resistance was found to be less than 10% of the heater zone resistance in two and three phase fluidized beds. The heat transfer resistances in liquid and three-phase fluidized beds have been represented by a modified Stanton and Peclet numbers based on the heat transfer resistances in the heater zone and in the fluidized bulk zone in series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.