Abstract

Existing overviews of arsenic removal include technologies that have traditionally been used (oxidation, precipitation/coagulation/membrane separation/adsorption) in static bed, with far less attention paid to fluidized bed. The objective of this study is to investigate the possibility of using cashew nut shale waste as an alternative adsorbent for the removal of arsenic (III) ions from aqueous solutions by using gas–liquid–solid fluidized bed. The effect of gas velocity, liquid velocity, initial static bed height and average particle size on the adsorption of arsenic (III) by cashew nut shale waste is investigated using batch methods. The single and combined effects of operating parameters such as gas velocity, liquid velocity, initial static bed height and average particle size on the adsorption of arsenic (III) from wastewater are analyzed using response surface methodology (RSM). A 24 full factorial central composite experimental design was employed. Analysis of variance (ANOVA) showed a high coefficient of determination value (R2=0.9611) and satisfactory prediction second-order regression model was derived. The optimum operating conditions were determined as gas velocity, 12.5m/s; liquid velocity, 0.04m/s; initial static bed height, 0.1m and average particle size of 1.27mm. At optimum adsorption conditions, the adsorption of arsenic (III) from wastewater in a three phase fluidized bed is found to be 92.5464%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.