Abstract

Let C be a smooth complete algebraic curve. Let I: C-+J be an universal abelian integral of C into its Jacobian J. Furthermore, let I(i): C(i) J be the mapping sending a point c1 + *-+ ci in the ith symmetric product C(i) to I(c1) + *-+ I(ci). Let Wi be the image of I(i) when i is less than the dimension of J. My purpose is to describe the tangent cone of Wi at any point. Let L(w) be the inverse image by I(i) of a point w in J. L(w) is a projective space representing a complete linear system of effective divisors on C. Geometrically, my main result is

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.