Abstract

We develop Teichmuller theoretical methods to construct new minimal surfaces in $\BE^3$ by adding handles and planar ends to existing minimal surfaces in $\BE^3$. We exhibit this method on an interesting class of minimal surfaces which are likely to be embedded, and have a low degree Gau\ss map for their genus; the (Weierstrass data) period problem for these surfaces is of arbitrary dimension. In particular, we exhibit a two-parameter family of complete minimal surfaces in the Euclidean three-space $\BE^3$ which generalize the breakthrough minimal surface of C. Costa; these new surfaces are embedded (at least) outside a compact set, and are indexed (roughly) by the number of ends they have and their genus. They have at most eight self-symmetries despite being of arbitrarily large genus, and are interesting for a number of reasons. Moreover, our methods also extend to prove that some natural candidate classes of surfaces cannot be realized as minimal surfaces in $\BE^3$. As a result of both aspects of this work, we obtain a classification of a family of surfaces as either realizable or unrealizable as minimal surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.