Abstract

This paper considers the problem of solving a special quartic–quadratic optimization problem with a single sphere constraint, namely, finding a global and local minimizer of \(\frac{1}{2}\mathbf {z}^{*}A\mathbf {z}+\frac{\beta }{2}\sum _{k=1}^{n}|z_{k}|^{4}\) such that \(\Vert \mathbf {z}\Vert _{2}=1\). This problem spans multiple domains including quantum mechanics and chemistry sciences and we investigate the geometric properties of this optimization problem. Fourth-order optimality conditions are derived for characterizing local and global minima. When the matrix in the quadratic term is diagonal, the problem has no spurious local minima and global solutions can be represented explicitly and calculated in \(O(n\log {n})\) operations. When A is a rank one matrix, the global minima of the problem are unique under certain phase shift schemes. The strict-saddle property, which can imply polynomial time convergence of second-order-type algorithms, is established when the coefficient \(\beta \) of the quartic term is either at least \(O(n^{3/2})\) or not larger than O(1). Finally, the Kurdyka–Łojasiewicz exponent of quartic–quadratic problem is estimated and it is shown that the largest exponent is at least 1/4 for a broad class of stationary points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.