Abstract
A major limitation of online algorithms that track the optimizers of time-varying nonconvex optimization problems is that they focus on a specific local minimum trajectory, which may lead to poor spurious local solutions. In this article, we show that the natural temporal variation may help simple online tracking methods find and track time-varying global minima. To this end, we investigate the properties of a time-varying projected gradient flow system with inertia, which can be regarded as the continuous-time limit of (1) the optimality conditions for a discretized sequential optimization problem with a proximal regularization and (2) the online tracking scheme. We introduce the notion of the dominant trajectory and show that the inherent temporal variation could reshape the landscape of the Lagrange functional and help a proximal algorithm escape the spurious local minimum trajectories if the global minimum trajectory is dominant. For a problem with twice continuously differentiable objective function and constraints, sufficient conditions are derived to guarantee that no matter how a local search method is initialized, it will track a time-varying global solution after some time. The results are illustrated on a benchmark example with many local minima.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.