Abstract

We study the following question What is the smallest t such that every symmetric boolean function on κ variables (which is not a constant or a parity function), has a non-zero Fourier coefficient of order at least 1 and at most t? We exclude the constant functions for which there is no such t and the parity functions for which t has to be κ. Let τ (κ) be the smallest such t. Our main result is that for large κ, τ (κ)≤4κ/logκ. The motivation for our work is to understand the complexity of learning symmetric juntas. A κ-junta is a boolean function of n variables that depends only on an unknown subset of κ variables. A symmetric κ-junta is a junta that is symmetric in the variables it depends on. Our result implies an algorithm to learn the class of symmetric κ-juntas, in the uniform PAC learning model, in time n o(κ) . This improves on a result of Mossel, O’Donnell and Servedio in [16], who show that symmetric κ-juntas can be learned in time n 2κ/3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.