Abstract
In this paper, we put forward an efficient method to study the symmetric Boolean functions with high algebraic immunity on even number of variables. We obtain some powerful necessary conditions for symmetric Boolean functions to achieve high algebraic immunity by studying the weight support of some specific types of Boolean functions of low degrees. With these results, we prove that the algebraic immunity of a large class of symmetric correlation immune Boolean functions, namely the symmetric palindromic functions, is not high. Besides, we construct all symmetric Boolean functions with maximum algebraic immunity and give a description for those with submaximum algebraic immunity. We also determine the Hamming weight, degrees and nonlinearity of the symmetric Boolean functions with maximum algebraic immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.