Abstract
In the possible winner problem, we need to compute if a set of partial votes can be completed such that a given candidate wins the election under some specific voting rule. In this paper, we determine the smallest number of undetermined pairs per partial vote for which the Possible Winner problem is NP-complete. In particular, we find the exact values of t for which the Possible Winner problem transitions to being NP-complete from being in P, where t is the maximum number of undetermined pairs in every vote. We demonstrate tight results for a broad class of scoring rules, Copelandα for every α∈[0,1], maximin, and Bucklin voting rules. A somewhat surprising aspect of our results is that for many of these rules, the Possible Winner problem turns out to be hard even if every vote has at most one undetermined pair of candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.