Abstract
We consider election scenarios with incomplete information, a situation that arises often in practice. There are several models of incomplete information and accordingly, different notions of outcomes of such elections. In one well-studied model of incompleteness, the votes are given by partial orders over the candidates. In this context we can frame the problem of finding a possible winner, which involves determining whether a given candidate wins in at least one completion of a given set of partial votes for a specific voting rule. The Possible Winner problem is well-known to be NP-Complete in general, and it is in fact known to be NP-Complete for several voting rules where the number of undetermined pairs in every vote is bounded only by some constant. In this paper, we address the question of determining precisely the smallest number of undetermined pairs for which the Possible Winner problem remains NP-Complete. In particular, we find the exact values of t for which the Possible Winner problem transitions to being NP-Complete from being in P, where t is the maximum number of undetermined pairs in every vote. We demonstrate tight results for a broad subclass of scoring rules which includes all the commonly used scoring rules (such as plurality, veto, Borda, and k-approval), Copeland^\alpha for every \alpha in [0,1], maximin, and Bucklin voting rules. A somewhat surprising aspect of our results is that for many of these rules, the Possible Winner problem turns out to be hard even if every vote has at most one undetermined pair of candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.