Abstract

Abstract The energy conversion between the vertical shear flow and the vertical mean flow has been computed using atmospheric data from the isobaric surfaces: 850, 700,500, 300, and 200 mb. In comparison with earlier calculations based on a smaller vertical resolution (2 levels) and a smaller sample, it is found that the new calculations give larger numerical values in better agreement with the results of numerical experiments concerning the general circulation of the atmosphere. The energy transformation has been computed in the wave number regime, and it is found that the medium-scale waves are responsible for the major portion of the transformation. The amounts of energy in the baroclinic component (the vertical shear flow) and the barotropic component (the vertical mean flow) have been computed as a function of wave number. It is found that the kinetic energy in the barotropic component is about 2.6 times the kinetic energy in the baroclinic component. The partitioning of the kinetic energy between th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call