Abstract
An analysis of the kinetic energy budget is made for two intensely developing cyclones over North America. The principal kinetic energy source for the first cyclone is the net horizontal transport of kinetic energy across the boundaries of the region enclosing the cyclone. For the second cyclone, it is the local kinetic energy generation. By investigating the kinetic energy budget of the vertically averaged flow (barotropic part) and the vertical shear flow (baroclinic part) it is found that the horizontal transport contribution to the kinetic energy budget of the first cyclone is evenly divided between the barotropic and baroclinic components. However, the kinetic energy generation is the dominant energy source of the second cyclone, and the horizontal transport is an energy sink. The vertical shear kinetic energy reservoir did not act as a “catalyst” as in hemispheric studies but varied during cyclone development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.