Abstract

Mathematical optimization algorithms are ubiquitous in computational science and engineering where the objective function of the optimization problem involves a complicated computer model predicting relevant phenomena of a scientific or engineering system of interest. Therefore, in this area of mathematical software, it is indispensable to combine software for optimization with software for simulation, typically developed independently of each other by members of separate scientific communities. From a software engineering point of view, the situation becomes even more challenging when the simulation software is developed using a parallel programming paradigm without taking into consideration that it will be executed within an optimization context. The EFCOSS environment alleviates some of the problems by serving as an interfacing layer between optimization software and simulation software. In this paper, we show the software design of those parts of EFCOSS that are relevant to the integration of a simulation software involving different parallel programming paradigms. The parallel programming paradigms supported by EFCOSS include MPI for distributed memory and OpenMP for shared memory. In addition, the simulation software can be executed on a remote parallel computer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.