Abstract
The entire world of parallel computing endured a change when accelerators are gradually embraced in today's high-performance computing cluster. A hybrid CPU-GPU cluster is required to speed up the complex computations by using parallel programming paradigms. This paper deals with performance evaluation of sequential, parallel and hybrid programming paradigms on the hybrid CPU-GPU cluster using the sorting strategies such as quick sort, heap sort and merge sort. In this research work performance comparison of C, MPI, and hybrid [MPI+CUDA] on CPU-GPUs hybrid systems are performed by using the sorting strategies. From the analysis it is observed that, the performance of parallel programming paradigm MPI is better when compared against sequential programming model. Also, research work evaluates the performance of CUDA on GPUs and hybrid programming model [MPI+CUDA] on CPU+GPU cluster using merge sort strategies and noticed that hybrid programming model [MPI+CUDA] has better performance against traditional approach and parallel programming paradigms MPI and CUDA When the overall performance of all three programming paradigms are compared, MPI+CUDA based on CPU+GPU environment gives the best speedup.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.