Abstract
Numerical simulation is a powerful tool in science and engineering, and it is also used for optimizing the design of products and experiments rather than only for reproducing the behavior of scientific and engineering systems. In order to reduce the number of simulation runs, the traditional "trial and error" approach for finding near‐to‐optimum design parameters is more and more replaced with efficient numerical optimization algorithms. Done by hand, the coupling of simulation and optimization software is tedious and error‐prone. In this note we introduce a software environment called EFCOSS (Environment For Combining Optimization and Simulation Software) that facilitates and speeds up this task by doing much of the required work automatically. Our framework includes support for automatic differentiation providing the derivatives required by many optimization algorithms. We describe the process of integrating the widely used computational fluid dynamics package FLUENT and a MINPACK‐1 least squares optimizer into EFCOSS and follow a sample session solving a data assimilation problem.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.