Abstract

On etudie la propriete de decroissance des solutions des equations d'onde dissipatives non lineaires de la forme: ∂ 2 u/∂t 2 -Δu+g(∂u/∂t)=f(x,t), (x,t)∈Ω×R + avec les conditions u(x,o)=u 0 (x), u t (x,o)=u 1 (x), x∈Ω et u(x,t)=0 sur ∂Ω×R + , ou Ω est un domaine borne de R n avec une frontiere lisse ∂Ω et g(v) est une fonction du genre k/v/ α v,k>o,α≥o

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.