Abstract
In this paper we establish a complete local theory for the energy-critical nonlinear wave equation (NLW) in high dimensions ℝ × ℝ d with d ≥ 6. We prove the stability of solutions under the weak condition that the perturbation of the linear flow is small in certain space-time norms. As a by-product of our stability analysis, we also prove local well-posedness of solutions for which we only assume the smallness of the linear evolution. These results provide essential technical tools that can be applied towards obtaining the extension to high dimensions of the analysis of Kenig and Merle [17] of the dynamics of the focusing (NLW) below the energy threshold. By employing refined paraproduct estimates we also prove unconditional uniqueness of solutions for d ≥ 6 in the natural energy class. This extends an earlier result by Planchon [26].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.