Abstract
Abstract The complexity of implementation of a threshold symmetric n-place Boolean function with threshold k = O(1) via circuits over the basis {∨, ∧} is shown not to exceed 2 log2 k ⋅ n + o(n). Moreover, the complexity of a threshold-2 function is proved to be 2n + Θ( $\begin{array}{} \sqrt n \end{array} $ ), and the complexity of a threshold-3 function is shown to be 3n + O(log n), the corresponding lower bounds are put forward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.