Abstract

Networks-on-chip (NoCs) are emerging as the way to interconnect the processing cores and the memory within a chip multiprocessor. As recent years have seen a significant increase in the number of cores per chip, it is crucial to guarantee the scalability of NoCs in order to avoid communication to become the next performance bottleneck in multicore processors. Among other alternatives, the concept of wireless network-on-chip (WNoC) has been proposed, wherein on-chip antennas would provide native broadcast capabilities leading to enhanced network performance. Since energy consumption and chip area are the two primary constraints, this work is aimed to explore the area and energy implications of scaling a WNoC in terms of: 1) the number of cores within the chip, and 2) the capacity of each link in the network. To this end, an integral design space exploration is performed, covering implementation aspects (area and energy), communication aspects (link capacity), and network-level considerations (number of cores and network architecture). The study is entirely based upon analytical models, which will allow to benchmark the WNoC scalability against a baseline NoC. Eventually, this investigation will provide qualitative and quantitative guidelines for the design of future transceivers for wireless on-chip communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.