Abstract

Efficient geometric algorithms are given for optimization problems arising in layered manufacturing, where a 3D object is built by slicing its CAD model into layers and manufacturing the layers successively. The problems considered include minimizing the stair-step error on the surfaces of the manufactured object under various formulations, minimizing the volume of the so-called support structures used, and minimizing the contact area between the supports and the manufactured object—all of which are factors that affect the speed and accuracy of the process. The stair-step minimization algorithm is valid for any polyhedron, while the support minimization algorithms are applicable only to convex polyhedra. The techniques used to obtain these results include construction and searching of certain arrangements on the sphere, 3D convex hulls, halfplane range searching, and constrained optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.