Abstract

Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart–Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.