Abstract
Partial differential equations (PDEs) with random input data, such as random loadings and coefficients, are reformulated as parametric, deterministic PDEs on parameter spaces of high, possibly infinite dimension. Tensorized operator equations for spatial and temporalk-point correlation functions of their random solutions are derived. Parametric, deterministic PDEs for the laws of the random solutions are derived. Representations of the random solutions' laws on infinite-dimensional parameter spaces in terms of ‘generalized polynomial chaos’ (GPC) series are established. Recent results on the regularity of solutions of these parametric PDEs are presented. Convergence rates of bestN-term approximations, for adaptive stochastic Galerkin and collocation discretizations of the parametric, deterministic PDEs, are established. Sparse tensor products of hierarchical (multi-level) discretizations in physical space (and time), and GPC expansions in parameter space, are shown to converge at rates which are independent of the dimension of the parameter space. A convergence analysis of multi-level Monte Carlo (MLMC) discretizations of PDEs with random coefficients is presented. Sufficient conditions on the random inputs for superiority of sparse tensor discretizations over MLMC discretizations are established for linear elliptic, parabolic and hyperbolic PDEs with random coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.