Abstract

Abstract This paper focuses on the analysis of a steady thermo-electromagnetic problem related to the modeling of induction heating processes. Taking advantage of the cylindrical symmetry, the original three-dimensional problem can be reduced to a two-dimensional one on a meridional section, provided that the current density has only the azimuthal component. A variational formulation is presented in appropriately weighted Sobolev spaces, and the existence of a solution is established by employing a fixed-point argument. Furthermore, uniqueness and additional regularity results are proved under reasonable assumptions on the physical coefficients. A finite element approximation combined with a fixed-point iteration scheme is proposed for the numerical solution of the problem. A priori error estimates are obtained to quantify the accuracy of the approximation. Finally, numerical results are reported to validate the theoretical estimates and assess the performance of the method in a physical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.