Abstract

The effect of hub length and axial location on the performance of shrouded hydrokinetic turbines has been investigated using axisymmetric actuator disk simulations. Five systems with different hubs (or without a hub, for reference) are considered with a common shroud design. Flow separation on the hub was found to be detrimental to performance, and to be sensitive to rotor loading, leading to unacceptable off-design performance. When the thrust coefficient, CT, is below the optimal value of 8/9, increasing CT promotes flow separation on the central hub; continued increases beyond this value facilitate reattachment. Flow separation on the hub was avoided altogether when most of the hub was placed upstream of the rotor plane—contrary to the convention for unshrouded turbines—where the shroud geometry lends a favorable pressure gradient. This latter design achieved performance in close agreement with the open-centered design, which is recommended when feasible to avoid the risks of hub-flow separation. With a central hole diameter of 0.228D, where D is the rotor diameter, a penalty of <5% in optimal performance was found compared to an actuator disk spanning the entire shroud throat. Lastly, a discussion of the relationship between total system thrust and power extraction is offered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.