Abstract

Emissions from mobile sources have become a major concern for health, environmental sustainability and climate change and high-resolution inventories are needed to support the design and assessment of abatement measures in urban areas. This study addresses the development of a traffic emissions inventory for Guayaquil, the second largest city in Ecuador, using the International Vehicle Emissions Model (IVE). Emissions are allocated with a spatial resolution of 1 km × 1 km and a temporal resolution of 1 h using a top-down methodology. This application combines traffic statistics already available in the city with the data from a field campaign to characterize vehicle fleet composition and activity patterns. The estimated annual emissions for the city were 237.1 kt of CO, 46.4 kt of NOx, 28.5 kt of VOC, 7.7 kt of PM10, 0.70 kt of SO2 and 4549.7 kt of CO2. 92.3 % of CO and 85.4 % of VOC were emitted by light gasoline vehicles, including private passenger vehicles and taxis, which represents 68.6 % and 8.8 %, respectively of the total fleet and contributes 52 % and 22 % of the total vehicle kilometer traveled (VKT), respectively. 48.9 % of NOx and 82 % of PM10 were emitted by the bus fleet although buses only represent 7.5 % of the total fleet and contribute 10.6 % of total VKT in the city. 41.1 % and 36.5 % of CO2 were emitted by buses and private vehicles, respectively. Even though, the average age of the fleet is below 10 years, the fleet in Guayaquil presents outdated emission standards and high emission factors. We found the higher emission rates in dense populated areas are associated to secondary roads. There is not much variability of emissions between months, but the typical daily pattern of emissions shows a peak in the morning and another in the afternoon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call